The Discontinuous Galerkin Finite Element Method for Solving the MEG and the Combined MEG/EEG Forward Problem

نویسندگان

  • Maria Carla Piastra
  • Andreas Nüßing
  • Johannes Vorwerk
  • Harald Bornfleth
  • Robert Oostenveld
  • Christian Engwer
  • Carsten H. Wolters
چکیده

In Electro- (EEG) and Magnetoencephalography (MEG), one important requirement of source reconstruction is the forward model. The continuous Galerkin finite element method (CG-FEM) has become one of the dominant approaches for solving the forward problem over the last decades. Recently, a discontinuous Galerkin FEM (DG-FEM) EEG forward approach has been proposed as an alternative to CG-FEM (Engwer et al., 2017). It was shown that DG-FEM preserves the property of conservation of charge and that it can, in certain situations such as the so-called skull leakages, be superior to the standard CG-FEM approach. In this paper, we developed, implemented, and evaluated two DG-FEM approaches for the MEG forward problem, namely a conservative and a non-conservative one. The subtraction approach was used as source model. The validation and evaluation work was done in statistical investigations in multi-layer homogeneous sphere models, where an analytic solution exists, and in a six-compartment realistically shaped head volume conductor model. In agreement with the theory, the conservative DG-FEM approach was found to be superior to the non-conservative DG-FEM implementation. This approach also showed convergence with increasing resolution of the hexahedral meshes. While in the EEG case, in presence of skull leakages, DG-FEM outperformed CG-FEM, in MEG, DG-FEM achieved similar numerical errors as the CG-FEM approach, i.e., skull leakages do not play a role for the MEG modality. In particular, for the finest mesh resolution of 1 mm sources with a distance of 1.59 mm from the brain-CSF surface, DG-FEM yielded mean topographical errors (relative difference measure, RDM%) of 1.5% and mean magnitude errors (MAG%) of 0.1% for the magnetic field. However, if the goal is a combined source analysis of EEG and MEG data, then it is highly desirable to employ the same forward model for both EEG and MEG data. Based on these results, we conclude that the newly presented conservative DG-FEM can at least complement and in some scenarios even outperform the established CG-FEM approaches in EEG or combined MEG/EEG source analysis scenarios, which motivates a further evaluation of DG-FEM for applications in bioelectromagnetism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Analysis of a New Galerkin Method to Solve the Forward Problem in Meg and Eeg Using the Boundary Element Method

Sources of brain activity, e.g., epileptic foci can be localized by measuring the magnetic eld outside the head (MEG) or by recording the electric potential on the scalp (EEG). For a successful surgery a very high localization accuracy is needed. The most often used conductor model in the source localization is an analytic sphere, which is not always adequate, and thus a realistically shaped co...

متن کامل

Neuroelectric Current Localization from Combined EEG/MEG Data

EEG/MEG devices record external signals which are generated by the neuronal electric activity of the brain. The localization of the neuronal sources requires the solution of the neuroelectromagnetic inverse problem which is highly ill-posed and ill-conditioned. We provide an iterative thresholding algorithm for recovering neuroeletric current densities within the brain through combined EEG/MEG ...

متن کامل

Fast multipole acceleration of the MEG/EEG boundary element method.

The accurate solution of the forward electrostatic problem is an essential first step before solving the inverse problem of magneto- and electroencephalography (MEG/EEG). The symmetric Galerkin boundary element method is accurate but cannot be used for very large problems because of its computational complexity and memory requirements. We describe a fast multipole-based acceleration for the sym...

متن کامل

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

Efficient Computation of Lead Field Bases and Influence Matrix for the FEM-based EEG and MEG Inverse Problem

The inverse problem in EEG and MEG aims at reconstructing the underlying current distribution in the human brain. The finite element method, used for the forward problem, is able to realistically model tissue conductivity inhomogeneities and anisotropies. So far, the computational complexity is quite large when using the necessary high resolution finite element models. It is already known that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2018